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Abstract—Large Language Models (LLMs) have transformed
code assistants by enabling personalization, interactivity, and
higher abstraction. However, these assistants often struggle with
a common limitation; they generate responses based on a limited
set of relevant code snippets retrieved from the codebase using
semantic similarity search. This mechanism prevents them from
viewing the code structure holistically, making it difficult to give
accurate and complete answers to questions on code dependencies
and structure. This paper introduces a dependency-aware code
assistant that answers structural questions developers cannot
easily pose to general-purpose assistants like GitHub Copilot.
We achieve this by enriching the LLM with dependency facts
obtained from a code graph generated by a static-analysis
pipeline customized specifically for industry-scale codebases. The
dependency information is queried from a Neo4j database, which
stores the code graph, via Text-to-Cypher translation powered
by LLMs. Cypher is a query language, designed specifically for
querying graph-structured data.

We evaluated our solution at Philips Healthcare. Specifically,
we performed a benchmark with 420 collected questions and a
user study with seven industrial software engineers. By analyzing
the results, we identified common mistakes made by GPT-
4o in the Text-to-Cypher translation to query code graphs,
including syntax, schema and semantic errors. This work lays the
foundation for advancing Cypher query generation on industry-
scale code graphs and for augmenting graph-based code analysis
with LLMs.

Index Terms—Large language models, Text-to-Cypher, code
graph, static analysis, code assistants

I. INTRODUCTION

The emergence of Large Language Models (LLMs) has
significantly advanced the integration of artificial intelligence
into various software development activities, including, but
not limited to, code completion [15], code generation [11],
summarization [20], test generation [7], refactoring [1], and
language translation [40]. Tools such as GitHub Copilot [9]
and Tabnine [37] have been developed to offer these capa-
bilities, providing valuable assistance to software engineers.
Most code assistants are built on similar concepts, with
the Retrieval Augmented Generation (RAG) framework [8]
playing a key role. In these RAG-based code assistant, the
codebase is converted into vector embeddings and stored in
a vector database during the indexing phase. In response to

user queries, these code assistants retrieve relevant code snip-
pets and information from the embedded codebase, helping
engineers by offering suggestions based on their own code.
Researchers have empirically shown the effectiveness of these
tools for various software engineering activities [6, 23].

However, these code assistants face a common challenge.
Since they generate responses based on a limited number of
relevant code snippets retrieved from the codebase, they cannot
view the code structure holistically and fail to provide precise
answers to questions related to code structure and dependency.
This limitation arises because the retrieved snippets may
not capture the full context of the required structure and
dependencies, leading to incorrect, inaccurate, or incomplete
suggestions. This type of structure and dependency informa-
tion is crucial when performing large-scale code analysis for
comprehension and refactoring [16, 18].

Before the advent of LLMs, traditional static analysis tools
were developed and used to support dependency analysis. One
such tool is Renaissance, which has proven effective in iden-
tifying complex dependency relationships in large codebases
and supporting large-scale refactoring with various industry
case studies [5, 4]. By parsing the code and modeling it as a
code graph stored in a Neo4j graph database [28], the precision
and determinism of dependency analysis can be guaranteed.
However, achieving wide adoption for code analysis remains
challenging due to the complexity of interacting with the code
graph using Cypher queries. Cypher [30] is a query language
designed for Neo4j graph databases. Previous hands-on ses-
sions with developers suggested that writing Cypher queries
is often challenging due to the complexity of the Cypher
language, the underlying graph schema, and the analyzed
codebase. To make such a code graph more accessible for
analysis and enhance LLM-based code assistants to answer
dependency questions, we envision that a hybrid solution that
augments LLMs with dependency information automatically
retrieved from the code graph is promising.

In this paper, we present a GraphRAG solution (as shown in
Figure 1) that enables LLMs to access dependency information
from a code graph that is extracted from a codebase using Re-
naissance. When receiving a user question in natural language,



the code assistant converts the question into a Cypher query
(Text-to-Cypher) that is executed on a Neo4j database that
stores the code graph. The retrieved dependency information
is then used to generate an answer. This solution differs
from other code assistants by generating answers based on
dependency information retrieved from a code graph via query
generation, rather than based on code snippets retrieved from
a vector database via semantic similarity search.
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Fig. 1: GraphRag-based code assistant

We validated our solution at Philips Healthcare which is
a global company specializing in advanced imaging, patient
monitoring, and healthcare informatics solutions. Firstly, we
evaluated the ability of LLMs in translating questions in
natural language into Cypher queries for the code graph, using
a dataset of 420 questions from industrial engineers. Secondly,
we performed a user study with seven industrial engineers.
Although the current accuracy is not perfect, the 44% correct
response rate in benchmark demonstrates the potential of
LLM in automating complex query generation, especially
considering the complexity of the code graph schema. This
performance represents a meaningful step toward scalable and
intelligent code analysis in industrial settings. Our user study
further suggests that even when queries are not completely
correct, they can serve as useful starting points for engineers.

Our main contribution is threefold: (1) a Text-to-Cypher
dataset tailored for code graph analysis, constructed in an
industrial setting; (2) an empirical analysis of the ability of
LLMs to perform Text-to-Cypher translation for code graph
analysis, including a characterization of the errors they com-
monly make; and (3) a set of suggestions to address common
syntax, schema, and semantic errors in the translation. Our
work provides practical insights for researchers and practi-
tioners aiming to leverage LLMs in graph-based code analysis,
and lay the groundwork for more accurate and scalable query
generation for large-scale code graphs.

II. RELATED WORK

A. graph-based code assistants
Code assistants have been extensively studied since the rise

of LLMs [9, 37, 6, 23]. Most of them rely on semantic sim-
ilarity search to retrieve relevant contextual information [22].
Recently, researchers have explored searching code graphs to
retrieve precise dependency information [24, 31, 25]. Table I
compares CodexGraph [24], RepoUnderstander [25] and Re-
poGraph [31] with our work in several key aspects.

Firstly, previous work has mainly focused on designing
code assistants for Python, whereas our work targets C++,

a more complex language widely used in embedded systems
development. Since we utilize a static analysis tool designed
for industry-scale codebases, our graph schema extends be-
yond conventional function, class, and module relationships.
Unlike previous approaches, which typically model depen-
dencies at a more localized level, our schema captures not
only local dependencies but also architectural dependencies
across modules, projects, and Visual Studio solutions, making
it more effective in real-world software development scenarios.
Furthermore, these assistants also differ in methods used to
retrieve information from graphs. RepoUnderstander applies
Monte Carlo Tree Search algorithm which expands the search
by selecting child nodes based on exploration-exploitation
trade-offs. RepoGraph uses K-hop ego-graph search algo-
rithm [14] which expands the subgraph by retrieving all
connected nodes within K hops from the ego node. Both search
algorithms grow their search space iteratively, refining which
nodes to explore further. However, both methods inherently
approximate results rather than guaranteeing an exact match
on the graph. Furthermore, these methods are designed for
local search and thus cannot answer global questions that
require aggregation (e.g., which function has the highest fan-
in?). CodexGraph and our work both utilize LLMs for Text-
to-Cypher translation in information retrieval. However, the
CodexGraph study focuses on different use cases and does not
evaluate the accuracy of LLMs in performing this translation.

Secondly, we adopted a distinct evaluation approach, pro-
viding new insights into the applicability of graph-based code
assistants. Rather than relying solely on open-source bench-
marks like SWE-Bench [17], we employed a mixed-method
approach that combines a benchmark with an evaluation
session with industry engineers. This mixed-method evaluation
ensures both objective performance measurement and practical
insights from developers, enhancing our understanding of how
graph-based code assistants perform in real-world software
development scenarios.

B. Text-to-Query generation

Our research contributes to the body of knowledge on Text-
to-Query generation and evaluates the LLM-based Text-to-
Query translator for software engineering applications in an
industry setting. One of the query languages studied in Text-
to-Query research is SQL (Structured Query Language) [36,
42] which is the standard language for managing and querying
relational databases, since it is widely used across industries
and many examples are publicly available. In contrast, Text-
to-Cypher translation has received relatively limited attention
despite growing demand. Nonetheless, several researchers and
practitioners have open-sourced both datasets and LLM-based
solutions to support this task [26, 12, 38]. The published
datasets are designed for applications different from ours,
including those in the film industry and specialized medical
domains. An open-source repository offers several synthetic
datasets for benchmarking LLMs in Text-to-Cypher tasks [21].
Zhong et al. [41] have constructed a synthetic dataset for
two medical databases. Ozsoy et al. combined 16 publicly



TABLE I: Comparison with existing studies

CodexGraph [24] RepoUnderstander [25] RepoGraph [31] Our work
Target Language Python Python Python C++
Schema Function, class, and module

relationships
Function relationships Function and class relation-

ships
Relationships among code en-
tities, file system components
and Visual Studio project el-
ements

Retrieval Method Text-to-Cypher translation Monte Carlo Tree Search al-
gorithm

K-hop ego-graph search algo-
rithm

Text-to-Cypher translation

Use Case Code completion, issue fix-
ing, and code generation

Issue fixing Code completion and issue
fixing

Q&A about software structure
and dependency

Evaluation Method CrossCodeEval, SWE-Bench,
and EvoCodeBench

SWE-bench CrossCodeEval and SWE-
bench

Industry-based benchmark
and user study

available datasets into a dataset comprising 44,387 instances.
The benchmark study shows that fine-tuned models could
achieve better performance than pre-trained models.

Our work made several distinct contributions. Firstly, unlike
other studies, we evaluated the generation of Text-to-Cypher
for code graphs in industrial contexts, providing valuable in-
sights into its feasibility on software engineering applications.
Secondly, we conducted an in-depth analysis to identify the
mistakes and limitations of the models in this translation task,
going beyond quantitative insights to offer a more comprehen-
sive understanding of potential areas for improvement.

III. LLMS FOR CODE DEPENDENCY ANALYSIS

In this section, we describe the architecture of our graph-
based code assistant, which is augmented with dependency
information represented in a code graph. Next, we introduce
the static analysis tool used in this study for code graph
extraction. Finally, we present examples of answers given to
users by our code assistant.

A. Code assistant architecture

Figure 1 shows the components of our graph-based code
assistant. A code graph stored in a Neo4j database is provided
as the source of dependency information for the analyzed
codebase. When receiving a dependency question in natural
language, the component called Text-to-Cypher is triggered to
translate this question into a Cypher query using an LLM.
This LLM is provided with instructions, the user question,
the schema of the code graph, and few-shot examples. The
generated Cypher query is then executed in the Neo4j database
to retrieve the relevant dependency information. The relevant
dependency information is then used by an LLM to generate
an answer to the question.

B. Code graph

We employed a static analysis tool called Renaissance
to extract code graphs from C++ codebases. Renaissance
is a specially developed tool for large-scale code analysis
and refactoring [5, 4]. The extracted code graph follows a
rich schema with 11 node types and 18 relationship types,
organized into three main categories to reflect different layers
of software development. Code elements (e.g., function defini-
tions, declarations, and classes) capture the core logical struc-
ture of the source code. File system components (e.g., files

and folders) represent how the code is physically organized
on disk, which is essential for understanding dependencies
and file-level structure. Visual Studio elements (e.g., projects
and solutions) model the development environment and build
configuration, providing context on how the code is grouped
and compiled. The edges capture relationships across these
layers, such as function calls, class inheritance, file inclusions,
folder-file hierarchies, and project containment.

Previous case studies in industry [5, 4] have shown that
this code graph is effective and useful to analyze architec-
tural dependencies in large-scale codebases. For example, a
case study at Philips Healthcare focused on decoupling two
components using the code graph not only to identify shared
code but also to propose separation strategies, gather insights
into architectural dependencies, and track progress throughout
the refactoring process. As the users suggested, these insights
could not be obtained without such a code graph, given the
size of the codebase. However, during the same case study the
users noted that interacting with the code graph is non-trivial.
To formulate their questions as Cypher queries, they need a
good understanding of the Cypher language, the graph schema
and the codebase.

By using LLMs to translate user questions into Cypher
queries, we would like not only to provide LLMs with depen-
dency information, overcoming the limitations of existing code
assistants, but also to make such code graphs more accessible.

C. Answer presentation

Figure 2 shows an example of how our code assistant
presents answers to users. It can be seen that the code assistant
provides not only the final textual answer generated by the
LLM but also the generated queries, retrieved subgraphs, and
the table presenting the retrieved information. Engineers can
inspect the generated queries and modify them if necessary
to regenerate the answers. By examining these intermedi-
ate results, engineers can evaluate the quality of the gen-
erated answers, increasing transparency and trustworthiness.
Furthermore, engineers have the flexibility to choose which
representations of the answers to inspect, depending on the
type of questions asked. For example, for questions about
software metrics, the generated queries and the final textual
responses might be sufficient. In contrast, for questions about
dependencies between classes and functions, the retrieved
subgraph could be more insightful. Additionally, the table is



Fig. 2: Answer presentation

particularly useful when the retrieved subgraph is large and
requires further processing, like filtering.

IV. BENCHMARK

In this section, we describe our evaluation of the ability of
LLMs to translate users’ inquiries about the structure of their
codebase in natural language into Cypher queries.

A. Research questions

The following research questions are formulated to guide
our evaluation.

RQ1: To what extent can pre-trained LLMs accurately
translate dependency questions into Cypher queries for re-
trieving dependency information from the code graph?

Since LLMs can generate different Cypher queries that
retrieve the same information, we use the execution result of
queries as a proxy to assess the accuracy of the generated
queries, which leads us to the following sub-questions:

RQ1.1: Are the Cypher queries generated by pre-trained
LLMs executable?

RQ1.2: How accurate is the dependency information re-
trieved by the Cypher queries generated by pre-trained
LLMs?

RQ2: What are the main challenges pre-trained LLMs face
in Text-to-Cypher translation?

We constructed a dataset to quantitatively evaluate the
ability of LLMs in Text-to-Cypher translation (RQ1). This

evaluation addresses two sub-questions. RQ1.1 studies the
ability of LLMs in generating executable queries. RQ1.2 takes
this one step further to study whether LLMs can generate
queries that retrieve correct information. We used the execu-
tion result of queries as a proxy for measuring query accuracy,
as LLMs can generate different queries that still retrieve the
necessary dependency information. Next, we conducted an in-
depth analysis of cases where LLMs underperform, with four
authors analyzing and discussing these instances to gain deeper
insights (RQ2).

B. Data collection

We constructed a dataset for a code graph comprising 420
data points 1. Each data point includes a user question in
English, an expected Cypher query, the execution result of
the expected Cypher query, and a difficulty level label.

a) Code graph: To build a dataset for Text-to-Cypher
evaluation, we extracted a code graph using Renaissance from
an open-source C++ codebase called jsoncpp 2. We chose this
repository for the following reasons. Firstly, it is written in
C++ 14 which can be parsed by Renaissance. Secondly, this
repository has been actively maintained by more than 100
contributors. This repository is by no means representative of
the size of the repositories that Renaissance can analyze. Our
primary objective is to assess whether LLMs can understand
the semantic intent of user questions and accurately map
them to the corresponding entities, relationships, and attributes
defined in the code graph.

The extracted code graph from this repository contains
2751 nodes and 7722 relationships. In order to mimic an
evaluation with a closed-source codebase, we obfuscated the
code graph by renaming all entities in the graph. For example,
the node representing writer.h was renamed headerfile 1.h.
This obfuscation ensures that LLMs cannot generate queries
based on their pre-trained knowledge of the codebase. This
obfuscated code graph is stored in a Neo4j database.

b) Cypher query and difficulty level: We collected a set
of real-life queries adapted to the obfuscated code graph. This
involves gathering queries from Renaissance users at Philips
Healthcare, modifying these queries to be compatible with the
obfuscated code graph, and compiling the adapted queries into
a dataset with 420 data points.

Specifically, we performed the following steps. Queries
were collected from the users of Renaissance who have a
shared database of questions and queries based on their analy-
sis activities performed in practice. For example, one activity
involved analyzing the code graph to identify complex depen-
dency networks, which required restructuring and migrating
tests to a new library. By collecting them, we would like to
investigate whether LLMs can make the code graph more ac-
cessible by generating these queries for users. 84 queries were
collected and categorized into simple, intermediate, advanced,
and complex based on their difficulty. Simple queries only

1https://figshare.com/s/2d137b3b5b27b25658f4
2https://github.com/open-source-parsers/jsoncpp/tree/master Accessed on

May 10, 2024.

https://github.com/open-source-parsers/jsoncpp/tree/master


search for one type of nodes or one type of relationship with
a MATCH clause. Intermediate queries search for multiple
types of node and relationship with some simple filtering logic
(e.g., using String Comparison Operators such as STARTS
WITH). Advanced queries feature multi-step paths, conditional
logic including WHERE clauses with multiple conditions,
and/or utilize aggregation functions. Complex queries involve
complicated pattern matching with complicated conditional
logic. Next, these queries were adapted to the obfuscated
code graph. For example, if an original query was intended
to search for dependency information of a specific class in
their proprietary codebase, we adapted it to search for the
dependency information of a randomly selected class in the
obfuscated code graph.

c) Question and expected result: We collected the origi-
nal natural language questions corresponding to these queries
and prompted Google Gemini 1.5 Pro [10] to generate four
additional variants of each question. Each generated question
is reviewed and collaboratively refined by authors to ensure
clarity and readability. We selected Google Gemini 1.5 Pro as
it provides a distinct LLM from the models we evaluate, and it
has demonstrated strong performance on various benchmarks,
making it a suitable choice for generating initial questions
and reducing manual effort. In the final step, we obtained
the expected execution result by executing the 420 queries on
the Neo4j database that contains the obfuscated code graph.
Table II shows the distribution of different difficulty levels in
our dataset and an example question for each difficulty level.

TABLE II: Example question for each difficulty level

Difficulty level Count Example question
Simple 72 Identify the header files that are dependent

on “headerfile 12”.
Intermediate 88 Identify the source files and their associated

macro definitions where the macro file path
includes “folder 255”.

Advanced 84 Identify C++ declarations that are declared
in one source file but used in another, within
a maximum of five indirect usages.

Complex 92 List all projects and their associated
classes from the solution file located in
“folder 188/folder 616”. Include details on
the classes, their functions, the header files
where these classes are defined, and the
inheritance structure of these classes up to
five levels deep.

C. Setups

a) Model: We experimented with three state-of-the-art
pre-trained LLMs—GPT-3.5-turbo-0125, LLAMA3-70B, and
GPT-4o-2024-08-06. They are selected for their strong perfor-
mance in benchmarks like HumanEval [3].

b) Query execution timeout: Our experimental script pro-
cesses a total of 420 questions. To prevent resource blocking,
we enforced a 10-second timeout for each query executed
on the Neo4j database. This threshold was chosen based on
empirical testing, balancing performance and responsiveness;
most well-formed queries complete well within this time.

Queries exceeding 10 seconds often indicate excessive com-
plexity or suboptimal execution plans. Such queries are logged
and skipped, allowing the script to continue.

c) Neo4j transaction memory limit: The transaction
memory limit in Neo4j defines the maximum memory that a
single transaction can utilize during execution. This safeguard
prevents excessively large transactions from dominating sys-
tem memory. Additionally, transactions exceeding this limit
typically involve graphs too large to be meaningfully inter-
preted by humans. In this experiment, we used Neo4j 5.183

and its default transaction memory limit of 512 MB.

D. Metric and statistical test

a) Metric: As mentioned in Section IV-A, we assess
the accuracy of the retrieved dependency information rather
than the accuracy of the generated queries to address RQ1.2.
The existing metrics in the literature are mostly designed to
measure the ability of LLMs in code generation and text
generation [13, 32], which are not directly applicable to
our case. Since the retrieved dependency information can
be represented with subgraphs, we apply a graph metric to
compare the expected subgraph (i.e., the execution result of the
expected Cypher query) and the retrieved subgraph (i.e., the
execution result of the generated Cypher query). Specifically,
we use the metric Jaccard graph similarity [19] to quantify the
overlap between these two subgraphs G1 and G2. The metric
formula is shown below:

J(G1, G2) =
|G1 ∩G2|
|G1 ∪G2|

Value 1 indicates that two subgraphs are identical, while
Value 0 indicates that there is no overlap between the sub-
graphs. Values between 0 and 1 represent partial overlap, with
higher values indicating greater similarity. We choose Jaccard
similarity over precision and recall because it gives a single
value that is easy to interpret and compare between models.

b) Statistical test: To compare model performance, we
used the pairwise Mann-Whitney U test [27] to analyze the dis-
tribution of Jaccard similarity values across 420 questions, as
it does not assume normality. The pairwise tests provides a p-
value that helps us determine whether the observed differences
in Jaccard similarity values between models are statistically
significant. We used the standard 0.05 threshold, where p-
values below this indicate statistically significant differences
in model performance. Conducting multiple pairwise compar-
isons raises the risk of Type I errors. To address it, we adjusted
the p-values using the Bonferroni correction [39].

E. Results

1) Quantitative analysis: We start with our results for
RQ1 that studies the ability of LLMs in accurately retrieving
dependency information via Cypher queries.

Figure 3 shows the result of the execution of the Cypher
queries generated with these three pre-trained models (RQ1.1).

3https://neo4j.com/developer/kb/neo4j-supported-versions/



It can be seen that four categories are identified from the
execution results. Executable queries are runnable in the Neo4j
database without returning errors. Queries with Syntax Error
return error messages indicating syntactic problems. Queries
with Timeout Error cannot be completed within 10 seconds.
The last category includes queries with Transaction Memory
Limit Error, which occurs when the retrieved subgraph ex-
ceeds the memory limit of the database.

It can be observed that, overall, GPT-4o produces more
executable queries, with GPT-3.5-turbo coming in second.
Promisingly, GPT-4o produces only nine queries with syntactic
errors, suggesting that the model has a good knowledge of the
current Cypher language grammar (version 9). LLAMA3-70B
and GPT-3.5-turbo, however, generate a considerable number
of queries with syntax errors. We observe that some of these
errors occur when LLMs use legacy grammar constructs that
are not present in the current Cypher language grammar.
Another observation is that LLMs often introduce syntax
errors when attempting to use advanced Cypher libraries (e.g.,
APOC library). These observations can be explained by the
fact that Cypher is an evolving language, and LLMs might
not be trained with sufficient examples for up-to-date Cypher
grammar constructs and libraries.

Figure 3 shows that GPT-4o produces more timeout errors,
particularly with complex questions. While GPT-3.5-turbo
and LLAMA3-70B often produce queries with syntax errors
in these cases, GPT-4o generates computationally complex
queries that lead to timeouts. In this experiment, timeout and
memory limit errors account for only 3% of cases but could
become more prominent with larger code graphs, indicating a
potential scalability concern.
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Fig. 3: Execution result of generated queries

Next, let us discuss the accuracy of the retrieved subgraph
(RQ1.2). When an execution error occurs, the retrieved sub-
graph is considered to contain an empty set of nodes and
edges, resulting in no overlap with the expected subgraph.
Consequently, the similarity value is 0. Table III presents
the result of the pairwise test while Figure 4 shows the
distribution of similarity values across six bins: 0, 0.01–0.25,
0.26–0.50, 0.51–0.75, 0.76–0.99, and 1. Since all the adjusted
p-values shown in Table III are below 0.05, we can con-
clude that the distributions of the similarity values for all
the compared pairs are statistically different. It can be seen
from Figure 4 that GPT-4o significantly outperforms GPT-

3.5-turbo and LLAMA3-70B, resulting in perfect accuracy for
44% of questions. Additionally, LLAMA3-70B significantly
outperforms GPT-3.5-turbo. It should be noted that queries
resulting in imperfect accuracy (similarity value between 0
and 1) could still be very useful as a starting point, given they
capture relevant information. Modifying them with knowledge
of the graph schema can often lead to a better result.

TABLE III: Pairwise Mann-Whitney U test results (with Bonferroni
correction)

model 1 model 2 p-value adjusted p-value
GPT-3.5-turbo LLAMA3-70B 1.09e-02 3.28e-02
GPT-3.5-turbo GPT-4o 4.42e-15 1.32e-14
LLAMA3-70B GPT-4o 9.11e-08 2.73e-07
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Fig. 4: Accuracy of retrieved subgraphs

Figure 5 focuses on the best-performing model, GPT-4o, and
analyzes its performance across different question difficulty
levels. It can be observed from this box-plot that most simple
questions are translated into queries accurately (with median
similarity value 1). However, accuracy decreases as difficulty
level increases. This observation suggests that further work is
required to answer complex questions effectively.
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Fig. 5: Box-plot for distribution of similarity values with GPT-4o by
difficulty level

2) Source of errors: As mentioned in Section IV-E1, we
observe that LLMs could generate queries that are not ex-
ecutable due to syntax errors. We further examine, analyze,
and discuss cases where GPT-4o generates executable queries,
but the execution results have a similarity score below 1. We
identify two main challenges that GPT-4o is still facing (RQ2).

a) Violation of graph schema: We observed that 17
queries generated by GPT-4o, while syntactically valid and
executable, violate the graph schema. Due to mismatches in



node and relationship types, these queries fail to retrieve the
intended information.

An observation is that LLMs can invert the direction of
the relationship in the generated Cypher statement. This prob-
lem has been identified by practitioners. An algorithm that
corrects the direction has been proposed and integrated into
LangChain4. However, our experiments with this algorithm
shows that it often fails to fulfill its intended purpose. One key
limitation is its reliance on regular expressions to extract node
and relationship types from Cypher statements, rather than us-
ing pattern matching on the Cypher syntax tree. Consequently,
this heuristic approach can misinterpret complex relationships
and nested structures, especially in queries with uncommon
patterns. An observed limitation is that spaces before or after
an arrow symbol (→ or ←) prevent proper correction. We
identified this issue because LLMs often add spaces in gen-
erated Cypher statements, which remain syntactically correct.
The sensitivity of this heuristic approach to formatting issues
reduces its reliability, as minor and valid variations in syntax
can affect its effectiveness.

Another observation is that LLMs can hallucinate a rela-
tionship type that is not present between two node types. For
example, one incorrect query searches for all class declarations
(CppDeclaration nodes in our schema) that are declared within
a function definition (CppFunctionDefinition nodes in our
schema). However, it uses relationship type CppCalls instead
of CppUses. This violates our schema, as relationship type
CppCalls is only present between functions, not between
classes and functions. These observations suggest that LLMs
can generate queries that violate the schema of the code graph.
We discuss possible improvements in Section VI-0d.

b) Intent-concept mapping challenge: The main source
of error arises when GPT-4o encounters questions involving
high-level user intents. In such cases, the model often lacks
clarity on how to map these abstract intents to specific
graph concepts, such as node types or relationship types. For
example, this issue is evident in questions related to class
interactions. When asked, “How does class A interact with
other classes?” without a clear definition of “interaction”, the
assistant generates a query that searches for direct relation-
ships between classes, namely inheritance and composition
(as shown in Query 1). This suggests that GPT-4o maps “class
interaction” to inheritance and composition relationships in the
graph schema, which might not be the complete and precise
definition of class interaction intended by users.

Query 2 is generated by the assistant when asked: “How
does class A interact with other classes through inheritance,
composition, and function calls?”. It can be seen that the
generated query consists of three matching steps where each
intended relationship is searched.

MATCH (classA:CppDeclaration {class: "A"})-[:CppInherits|
CppContains]->(relatedClass:CppDeclaration)

RETURN relatedClass

Cypher Query 1: Generated query for question “How does class A
interact with other classes?”

4https://python.langchain.com/api reference/community/chains/langchain
community.chains.graph qa.cypher utils.CypherQueryCorrector.html

MATCH (classA:CppDeclaration {name: "A"})-[:CppInherits]->(
superclass:CppDeclaration)

RETURN "Inheritance" AS interaction, superclass.name AS
relatedClass

UNION MATCH (classA:CppDeclaration {name: "A"})-[:CppContains
]->(member:CppDeclaration)

RETURN "Composition" AS interaction, member.name AS relatedClass
UNION MATCH (classA:CppDeclaration {name: "A"})-[:CppContains

]->(func:CppFunctionDefinition)-[:CppCalls]->(calledFunc:
CppFunctionDefinition)

RETURN "Function Call" AS interaction, calledFunc.class AS
relatedClass

Cypher Query 2: Generated query for question “How does class A
interact with other classes through inheritance, composition, and

function calls?”

In particular, the third part of the query identifies all instances
of indirect relationships between classes through function
calls, which was not captured by the query shown in Query 1.
This example shows that by posing questions in a more
detailed manner, it becomes possible to generate a query
that more accurately captures user intents. This observation
suggests the need for a mechanism to guide users to refine
and clarify their intents, helping LLMs map the intentions to
specific concepts within the graph schema.

V. USER STUDY

Next, we conducted a complementary evaluation with
Philips Healthcare engineers to gather user feedback and
identify areas for improvement.

A. Methodology

We had evaluation sessions with seven participants from
IGT (Image-guided therapy) department of Philips Healthcare.
Table IV shows the demographics of these participants. They
work on a codebase with over one million lines of code,
developed over more than a decade. Since they often need
to perform dependency and structure analysis in their daily
work, they are considered to be the target users of our code
assistant. The extracted code graph for this codebase contains
500K+ nodes and 2M+ edges.

Each evaluation session consisted of three sections. In the
first section, we collected the background information of the
participant, including their current role, years of experience,
and familiarity with C++ and the analyzed codebase. Each ses-
sion also featured a section wherein the participant was given
hands-on experience with our code assistant. Firstly, partici-
pants were instructed to experiment with example questions,
in preparation for open-ended interaction where they could ask
their own questions. This allowed us to observe the behaviour
of an engineer and collect a new set of questions for the future
validation of our system. In the final section, we gathered
their feedback on potential improvements to the tool. Each
session was conducted in person and lasted approximately
1.5 ∼ 2 hours. In these sessions, execution logs captured
all user queries and the answers of the tool. We encouraged
participants to share feedback as they interacted with it. We
recorded whether users considered the answers correct and
captured their responses. After the sessions, GPT-4o was used
to extract common themes and generate labels, which were
then validated through manual analysis to determine frequency
and identify additional patterns.

https://python.langchain.com/api_reference/community/chains/langchain_community.chains.graph_qa.cypher_utils.CypherQueryCorrector.html
https://python.langchain.com/api_reference/community/chains/langchain_community.chains.graph_qa.cypher_utils.CypherQueryCorrector.html


TABLE IV: Demographics of Participants

Participant ID 1 2 3 4 5 6 7
Professional Experience (#year) 12 3 2 3 3 11 1

Current Role 1 PO D A D D A PO
C++ Ability 2 4 4 4 4 4 5 4

1. D: Developer, A: Architect, PO: Product Owner
2. Participants were asked to rate their C++ proficiency on a 1–5 scale

B. Analysis of evaluation sessions

Across the evaluation sessions, participants asked our tool a
total of 91 unique questions. Figure 6 illustrates the distribu-
tion of query outcomes based on user interactions. The results
are categorized into four distinct response types. We illustrate
these categories with examples and anonymize entities in these
examples to preserve confidentiality.

Incorrect
37.5%

Correct
36.4%

Cannot be answered
with the current code graph
15.9%

Incorrect but useful
10.2%

Fig. 6: Pie chart depicting the the success rate of our tool

1. Correct: These occurred when the tool generated queries
that provided satisfactory outputs in text, tabular, or graph
format. For instance, Participant 6 inquired “What functions
are called ‘function1’ and what are their namespaces?”. It
is common to have functions with the same name defined
in different namespaces, modules, or projects in large-scale
codebases. The question is asked to identify these functions
invoked in different contexts. The tool generated a query that
returned the desired results:

MATCH (f:CppFunctionDeclaration|CppFunctionDefinition)
WHERE f.name = "function1"
RETURN f.name, f.namespace

2. Incorrect: These cases involved responses that were either
irrelevant or failed to assist in problem-solving. For example,
Participant 2 asked “What projects are included by both
solution s1.sln and s2.sln that are not test projects?” This
question aimed to identify shared production projects and
exclude test projects in a multi-solution Visual Studio setup,
which cannot be answered with Visual Studio built-in features.
The assistant generated an overly restrictive query that filters
project names using an exact match for the string test, resulting
in an empty subgraph:

MATCH (solution1:Solution {name: "solution1.sln"})-[:SlnContains
]->(project:ProjectCOrCpp),(solution2:Solution {name: "
solution2.sln"})-[:SlnContains]->(project)

WHERE NOT project.name = "test"
RETURN DISTINCT project

Replacing the exact match with a ”contains” condition
yields more meaningful results. This indicates that incorpo-
rating domain knowledge, such as common naming patterns

or project conventions, could guide the generation of more
appropriate query conditions and improve result relevance.

3. Incorrect but useful: These responses provided partial
solutions or valuable starting points for users. For example,
when Participant 7 asked “If I change ‘sourceFile1’, what are
the impacted functionality?” the tool produced the query:

MATCH (file:SourceFile {name: "soureFile1.cpp"})
OPTIONAL MATCH (file)-[:CppUses]-(func:CppFunctionDeclaration|

CppFunctionDefinition|CppDeclaration)
RETURN DISTINCT func

The user had expected a list of executables but received a
list of the impacted functions instead. This acted as a helpful
starting point and the Cypher query was successfully edited to
return the desired information about the parent files of these
functions and hence the expected answer.

4. Cannot be answered with the code graph: These questions
required information not captured within the current graph. For
example participant 3 asked “What project has on average the
largest number of lines of code per source file?” Information
about the number of lines of code in a source file is missing
from the graph, therefore our tool, in its current state, is not
be able to answer these questions.

The observed alignment between user session outcomes
and the quantitative benchmark provides empirical evidence
for the potential effectiveness of the assistant in real-world
settings. Both studies used GPT-4o and had success rates in a
comparable range: the benchmark showed a correct response
rate of 44. 2%, compared to 36. 4% in user evaluation sessions.

C. User feedback

The key areas for improvement and the frequency with
which they were identified are as follows:

User Support & Responsiveness 5 mentions
Users requested more informative responses beyond simple
“I do not know” statements when the tool cannot provide a
helpful answer. Suggestions include providing explanations
for query failures, requesting clarification when needed, and
offering interactive query building with advice.

Text-to-Cypher Improvements 4 mentions
Users suggested to focus on Text-to-Cypher capabilities,
specifically improvements in complexity handling, consis-
tency, accuracy, and response speed.

Visualizations & Diagrams 4 mentions
Users expressed interest in automatic diagram generation for
class, sequence, and state diagrams based on specified nodes.
More general requests include enhanced aesthetics, filtering
options, and export functionality for the current graph display.

Graph schema & Structure 3 mentions
Users emphasized the need for greater transparency in the
underlying graph schema. Suggestions include displaying the
graph schema alongside the main interface, providing more
comprehensive information about queries and data structure,



and implementing type hints for available operations.

Error Handling & UI 2 mentions
Users desired improved error handling with clear error mes-
sages, alongside general improvements to the user interface.

In this user study, we confirm the need to improve the
Text-to-Cypher translation, as previously identified in our
benchmark study. Furthermore, we identified the issues that
can only be observed through user interactions with our tool,
such as user support and responsiveness.

VI. POSSIBLE IMPROVEMENTS FOR TEXT-TO-CYPHER

As demonstrated in our benchmark study and user study,
LLM-based Text-to-Cypher translation shows promising re-
sults. However, further research is needed to enhance its fea-
sibility for industrial applications. In this section, we discuss
potential improvements to achieve more accurate information
retrieval from large-scale code graphs.

a) Providing LLMs with up-to-date grammar and library
knowledge: As observed, LLMs can generate queries with
syntax errors. Given that Cypher is an evolving query language
with updates to its grammar and libraries, it is essential to
provide LLMs with the latest knowledge of Cypher syntax
and features. Existing research from the field of code genera-
tion for general-purpose languages (GPL) and domain-specific
languages (DSL) can be borrowed to address this problem.

One way to address this challenge is by using a RAG
approach that incorporates relevant grammar and library in-
formation with question-query examples. This can be done
by retrieving similar and correct question-query pairs from a
database to dynamically construct few-shot prompts tailored
to the input question. Another approach is to embed grammar
knowledge by fine-tuning LLMs specifically for the current
version of Cypher. The comparison between RAG and fine-
tuning solutions has been experimented by a research study
that aims to generate code in DSLs [2]. Interestingly, the RAG
solution delivers quality comparable to the fine-tuned model
for the DSL. This suggests that RAG can be an alternative
to fine-tuning. It could also simplify the maintenance of
LLM-based assistants by removing the need for retraining
as DSLs evolve. However, both methods require a dataset
with examples that demonstrate the correct use of up-to-date
grammar, and neither guarantees syntax-error-free generation.

Non-data-driven solutions to improve code generation have
also been studied in the literature. For example, a technique
called Syncode [2] incorporates formal language grammar
directly into the code generation process. Using grammar
rules, Syncode ensures that the generated code adheres strictly
to the syntax requirements of the target languages. As shown
in their experiment, Syncode offers a more reliable solution for
generating syntax-error-free code in the target GPL compared
to out-of-box LLMs. However, it remains unclear whether this
grammar-based method is feasible and effective for database

query languages. We suggest that researchers study these data-
driven and non-data-driven solutions and conduct comparative
experiments to evaluate their effectiveness.

b) Guiding query regeneration with graph schema check-
ers: Another potential solution to address syntax errors and
graph schema violations is to formally validate whether gener-
ated queries conform to the Cypher syntax and graph schema.
This can be achieved by parsing Cypher queries into syntax
trees using a parser, such as one generated with ANTLR based
on the OpenCypher grammar [29]. The syntax tree represen-
tation of queries facilitates detailed analysis of each query
component, enabling precise detection and correction of syntax
and schema inconsistencies before execution. Detected syntax
and schema violations can be addressed in two ways. First,
some errors can be deterministically resolved by rewriting
the query using its syntax tree. For example, arrow direction
errors, as discussed in Section IV-E2a, can be corrected this
way. Alternatively, these violations can be used as feedback
for LLMs, supporting self-reflection and enabling iterative
refinement of the generated queries. Combining LLMs with
deterministic checker of Cypher syntax and graph schema can
greatly increase the quality of the generated queries.

c) Mapping high-level intents into concrete concepts in
graph schema: As observed in our experiment, LLMs often
struggle in associating words and terms from the user’s ques-
tion with the corresponding types of nodes and relationships
in the graph schema. The challenge is that such a mapping is
often not one-to-one. For example, the term interaction may
correspond to multiple relationship types, depending on the
question context and user interpretation. One way to address
this could be creating a mapping between common words and
terms into concrete types of relationships and nodes. This
mapping can be formulated into rules and injected in the
prompt. However, this approach does not scale well and lacks
flexibility. Alternatively, one could develop an ontology or
hierarchical representation of the schema, such as a multi-level
graph that captures relationships and compound entities. By
leveraging such structures, LLMs can more effectively align
user intents with relevant schema elements.

We believe it is essential to keep the user in the loop to
accurately capture their intent. When a question is ambigu-
ous, the assistant should be allowed to initiate a lightweight
clarification loop with the user. For example, if a user asks
about class interaction without clearly defining it, the model
could generate a response like, “There are multiple relation-
ships between classes, such as composition, inheritance and
function calls. Which relationships are you interested in?” This
interactive loop allows users to refine their intent and provides
the model with more context.

d) Decomposing complex questions into smaller manage-
able questions: Converting a complex question into a precise
query is a common challenge in Text-to-Query research. As
discussed in the area of Text-to-SQL, this challenge can be ad-
dressed by decomposing a complex question into smaller and
manageable sub-questions. For example, Pourreza et al. [33]
proposed a methodology to decompose user questions by



designing several LLM-based modules to 1) link the question
into concrete tables and columns in schemata, 2) classify
and decompose the question, 3) generate SQL queries using
different strategies based on the type of question, and 4) per-
form self-correction based on errors returned from execution.
Experiments with three LLMs demonstrate that this approach
consistently enhances their basic few-shot performance by ap-
proximately 10%. A follow-up study has explored fine-tuning
LLMs specifically for these decomposition steps [34]. Results
indicate that models trained on individual decomposition steps
outperform those trained to handle the entire query generation
task in a single step. It is interesting to explore if this multi-
LLM solution for question decomposition could be useful for
Text-to-Cypher generation.

VII. THREATS TO VALIDITY

Threats to internal validity relate to factors that may have
affected the outcomes of the study. In our benchmark study,
we constructed a semi-synthetic dataset by collecting queries
and corresponding questions from engineers and inferring
variants of questions using an LLM. There is a risk that the
generated questions might not accurately reflect the language
of the real world user. To mitigate this risk, we reviewed the
generated questions to ensure that they accurately captured
the queries. We rephrased questions that seemed unnatural or
overly simplified to better align with realistic query phrasing.
We conducted our benchmark using a code graph derived
from an open-source codebase. This setup carries a risk that
LLMs might generate responses based on prior knowledge
of the codebase, since many open-source repositories have
probably been included in the LLMs’ pre-training datasets. To
mitigate this risk, we obfuscated the code graph by altering
the names of entities, thereby removing semantic information
embedded in these names. This process preserved the graph
structure while anonymizing identifiers, reducing the likeli-
hood that LLMs could leverage prior knowledge specific to
this codebase. Furthermore, we conducted a user study using
a code graph extracted from a large-scale industry codebase,
which confirms our findings and provides new insights into
user experience with our assistant.

Threats to external validity questions whether our conclu-
sions are valid in a more general context. We used a specific
static analysis technique to extract the code graph. This raises
the question of whether the schema of our code graph is
generalizable to code graphs extracted using other techniques.
The graph schema has been successfully applied and validated
within several companies for representing relationships in
large-scale codebases, demonstrating its usefulness in real-
world environments. We acknowledge that variations in static
analysis techniques can lead to differences in the resulting
code graph schema, which may affect the applicability of our
findings to graphs generated by alternative approaches. Addi-
tionally, while the user study involved only seven participants
and may not be representative of the entire department or
broader population, it was designed as an exploratory effort
to identify key issues and inform future work. The primary

goal of our study is to demonstrate both the potential and the
challenges of leveraging LLMs to augment an existing code
analysis solution used in industry.

Threats to construct validity arise when a study fails to
accurately measure the intended concepts, leading to potential
misinterpretations of the results. In this study, we used the
graph Jaccard similarity metric to evaluate the execution
results of Cypher queries, serving as a proxy for the accuracy
of generated queries; however, this approach assumes that
the overlap reliably reflects correctness, which may not fully
capture semantic or logical accuracy. To mitigate this risk, we
conducted a user study where engineers provided feedback
on the correctness and relevance of the generated queries
and their results. This qualitative evaluation triangulates our
findings in the benchmark study, providing an additional layer
of validation beyond purely quantitative metrics.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents a code assistant that answers questions
about code dependencies and structure, complementing exist-
ing tools. We augment LLMs with dependency information
from a code graph extracted using an industry-proven static
analysis tool. Dependency information is retrieved from a
Neo4j database via Cypher queries generated by the LLM. We
conducted a quantitative analysis to assess LLM performance
in Text-to-Cypher translation and a user study with seven
engineers to better understand the associated challenges.

Our benchmark results indicate that GPT-4o achieves 44%
accuracy in correctly translating questions into Cypher queries.
Both the benchmark and user evaluation results reveal that
the generated queries can contain syntax errors and violations
of the graph schema. Furthermore, LLMs often struggle to
link high-level user intents in questions to concrete entities
in the graph schema. While the complexity of the code graph
schema used in industry presents challenges and results are not
yet perfect, this study demonstrates the potential of LLMs for
Text-to-Cypher translation in extracting dependency informa-
tion. It also identifies opportunities for improvement, paving
the way for more scalable and automated code analysis in
industry settings. As ongoing work, we are addressing several
challenges. First, we aim to improve translation accuracy
through fine-tuning techniques. Second, we are exploring inter-
active methods that allow LLMs to ask clarification questions
and iteratively refine queries. Finally, we are developing an
agent-based assistant with an orchestrator to combine search
strategies such as graph traversal and semantic similarity
search for handling diverse information needs [35].
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